Integer Polynomial Optimization in Fixed Dimension
نویسندگان
چکیده
We classify, according to their computational complexity, integer optimization problems whose constraints and objective functions are polynomials with integer coefficients and the number of variables is fixed. For the optimization of an integer polynomial over the lattice points of a convex polytope, we show an algorithm to compute lower and upper bounds for the optimal value. For polynomials that are non-negative over the polytope, these sequences of bounds lead to a fully polynomial-time approximation scheme for the optimization problem.
منابع مشابه
Integer convex minimization by mixed integer linear optimization
Minimizing a convex function over the integral points of a bounded convex set is polynomial in fixed dimension [6]. We provide an alternative, short, and geometrically motivated proof of this result. In particular, we present an oraclepolynomial algorithm based on a mixed integer linear optimization oracle.
متن کاملHuge Multiway Table Problems
Optimization over l×m× n integer threeway tables is NP-hard already for fixed l = 3, but solvable in polynomial time with both l,m fixed. Here we consider huge tables, where the variable dimension n is encoded in binary. Combining recent results on Graver bases and recent results on integer cones, we show how to handle such problems in polynomial time. We also show that a harder variant of the ...
متن کاملInteger Optimization on Convex Semialgebraic Sets
Let Y be a convex set inRk defined by polynomial inequalities and equations of degree at most d ≥ 2 with integer coefficients of binary length at most l. We show that if the set of optimal solutions of the integer programming problem min{yk | y = (y1, . . . , yk) ∈ Y ∩Zk} is not empty, then the problem has an optimal solution y∗ ∈ Y ∩Zk of binary length ld O(k ). For fixed k, our bound implies ...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملConvex integer maximization via Graver bases
We present a new algebraic algorithmic scheme to solve convex integer maximization problems of the following form, where c is a convex function on R and w1x, . . . , wdx are linear forms on R, max {c(w1x, . . . , wdx) : Ax = b, x ∈ N} . This method works for arbitrary input data A, b, d, w1, . . . , wd, c. Moreover, for fixed d and several important classes of programs in variable dimension, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2006